Superantigen antagonist blocks Th1 cytokine gene induction and lethal shock.
نویسندگان
چکیده
Bacterial superantigens trigger an excessive, Th1-cytokine response leading to toxic shock. We designed a peptide antagonist that inhibits SEB-induced expression of human genes for IL-2, IFN-gamma, and TNF-beta, cytokines that mediate shock. The peptide antagonist shows homology to a beta-strand-hinge-alpha-helix domain that is conserved structurally in superantigens produced by Staphylococcus aureus and Streptococcus pyogenes yet remote from known binding sites for the major histocompatibility class II molecule and T-cell receptor. For Th1-cell activation, superantigens depend on this domain. The peptide protected mice against lethal challenge with SEB or SEA. Moreover, it rescued mice undergoing toxic shock. Surviving mice rapidly developed broad-spectrum, protective immunity, which rendered them resistant to further lethal challenges with different staphylococcal and streptococcal superantigens. Thus, the lethal effect of superantigens, mediated by Th1 cytokines, can be blocked with a peptide antagonist that inhibits their action at the top of the toxicity cascade, before activation of T cells takes place.
منابع مشابه
Binding of Superantigen Toxins into the CD28 Homodimer Interface Is Essential for Induction of Cytokine Genes That Mediate Lethal Shock
Bacterial superantigens, a diverse family of toxins, induce an inflammatory cytokine storm that can lead to lethal shock. CD28 is a homodimer expressed on T cells that functions as the principal costimulatory ligand in the immune response through an interaction with its B7 coligands, yet we show here that to elicit inflammatory cytokine gene expression and toxicity, superantigens must bind dire...
متن کاملDefense against biologic warfare with superantigen toxins.
BACKGROUND Superantigens produced by Staphylococcus aureus and Streptococcus pyogenes are among the most lethal of toxins. Toxins in this family trigger an excessive cellular immune response leading to toxic shock. OBJECTIVES To design an antagonist that is effective in vivo against a broad spectrum of superantigen toxins. METHODS Short peptide antagonists were selected for their ability to...
متن کاملThe mechanism of superantigen-mediated toxic shock: not a simple Th1 cytokine storm.
The profound clinical consequences of Gram-positive toxic shock are hypothesized to stem from excessive Th1 responses to superantigens. We used a new superantigen-sensitive transgenic model to explore the role of TCRalphabeta T cells in responses to staphylococcal enterotoxin B (SEB) in vitro and in two different in vivo models. The proliferative and cytokine responses of HLA-DR1 spleen cells w...
متن کاملNuclear Factor of Activated T Cells Transcription Factor Nfatp Controls Superantigen-Induced Lethal Shock
Tumor necrosis factor alpha (TNF-alpha) is the key mediator of superantigen-induced T cell lethal shock. Here, we show that nuclear factor of activated T cells transcription factor, NFATp, controls susceptibility to superantigen-induced lethal shock in mice through its activation of TNF-alpha gene transcription. In NFATp-deficient mice, T cell stimulation leads to delayed induction and attenuat...
متن کاملStaphylococcal Superantigens Spark Host-Mediated Danger Signals
Staphylococcal enterotoxin B (SEB) of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific Vβ regions of T-cell receptors (TCR) and major histocompatibility complex (MHC) class II on a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of leukocyte biology
دوره 69 6 شماره
صفحات -
تاریخ انتشار 2001